客观题简化求解技巧分类归纳(高等数学) - 考研数学(一) - 中国高校教材图书网
|
书名: |
客观题简化求解技巧分类归纳(高等数学)
考研数学(一)
|
ISBN: | 7-5609-6135-4 |
条码: | |
作者: |
毛纲源
相关图书
|
装订: | 平装 |
印次: | 1-1 |
开本: | 16开 |
定价: |
¥28.80
折扣价:¥27.36
折扣:0.95
节省了1.44元
|
字数: |
408千字
|
出版社: |
华中科技大学出版社 |
页数: |
|
发行编号: | |
每包册数: |
|
出版日期: |
2010-06-01 |
|
内容简介: |
本书以历年考研数学真题中的客观题(选择题和填空题)为例,归纳、总结这类题型的简化求解方法与技巧.这些方法与技巧不仅有助于快速、准确地求解客观题,而且对证明题和计算题的求解也能发挥重要的作用.读者阅读本书,必定会提高复习效率和应试能力.
|
作者简介: |
|
章节目录: |
第1章函数、极限、连续1.1函数及其性质
1.1.1求复合函数的表达式
1.1.2求反函数的表达式
1.1.3判别函数的有界性
1.1.4判别函数的奇偶性
1.1.5奇偶函数常用性质的应用
1.1.6判别函数的单调性
1.1.7判别函数的周期性1.2极限的求法
1.2.1数列的极限
1.2.2用等价无穷小代换求极限
1.2.3用泰勒公式求极限
1.2.4简化计算“1∞”型幂指函数的极限
1.2.5求子函数形式特殊的函数极限
1.2.6比较或确定无穷小的阶
1.2.7由极限值确定待定常数
1.2.8已知函数极限值,求与此极限有关的另一函数极限1.3函数的连续性
1.3.1讨论函数的连续性
1.3.2讨论用极限形式给出的函数的连续性、可导性
1.3.3求间断点及其类型
1.3.4利用连续性确定待定常数
1.3.5讨论方程的实根习题1
第2章一元函数微分学2.1判别函数在某点的可导性
2.1.1用导数定义判别函数在某点的可导性
2.1.2利用特殊的分式极限式判别函数在某点可导
2.1.3判别含绝对值的函数在某点的可导性
2.1.4判别一类特殊的分段函数在分段点的可导性
2.1.5利用导数定义求分式函数的极限
2.1.6利用导数定义或导数存在的充要条件求函数的待定常数2.2计算导数
2.2.1计算复合函数的导数
2.2.2分段函数在分段点处的导数的求法
2.2.3求反函数的导数
2.2.4求隐函数的导数
2.2.5求由参数方程x=x(t)
y=y(t)所确定的函数y=y(x)的导数2.3计算高阶导数与微分
2.3.1计算高阶导数
2.3.2函数微分的概念及其计算2.4微分中值定理的综合应用
2.4.1利用微分中值定理的条件与结论求解客观题
2.4.2求解与函数差值有关的问题
2.4.3讨论导函数的变化趋势与函数的变化趋势的关系2.5讨论函数的性态
2.5.1讨论函数的单调性并求其单调区间
2.5.2判别某点是否为函数的极值点
2.5.3讨论曲线的凹凸性并求其凹凸区间与拐点
2.5.4求函数的极值和最值
2.5.5求曲线的渐近线2.6一元函数微分学的几何应用
2.6.1求过曲线上一已知点的切(法)线方程
2.6.2过不在曲线上的已知点,求该曲线的切(法)线方程
2.6.3求解与两曲线相切的有关问题
2.6.4求解与切线在坐标轴上的截距有关的问题
2.6.5计算曲率、曲率半径与曲率圆习题2
第3章一元函数积分学3.1原函数与不定积分
3.1.1原函数与不定积分的概念、性质及其相互关系
3.1.2求分段函数的积分3.2计算不定积分
3.2.1用凑微分法(第一类换元积分法)计算不定积分
3.2.2用第二类换元积分法计算积分
3.2.3用分部积分法计算不定积分
3.2.4用分项积分法计算不定积分3.3利用定积分定义求积和式的极限
3.3.1求有一因式或能化为一因式为1/n的积和式的数列极限
3.3.2求需将其放缩后能用定积分定义求和的积和式的极限3.4利用定积分的性质计算定积分
3.4.1利用定积分的几何意义计算定积分
3.4.2计算对称区间上的定积分
3.4.3计算周期函数的定积分
3.4.4利用定积分的常用计算公式求定积分
3.4.5已知被积函数的导数或被积函数含抽象函数的导数,求其积分
3.4.6求解含积分值为常数的函数方程3.5用换元法计算定积分
3.5.1计算需改变被积函数的定积分
3.5.2计算需同时改变积分限和被积函数的定积分3.6计算几类需分子区间积分的定积分
3.6.1计算分段函数的定积分
3.6.2求被积函数含绝对值的定积分
3.6.3求被积函数含最值符号max或min的定积分
3.6.4计算被积函数含偶次算术方根的定积分3.7比较定积分的大小3.8求解与变限积分有关的问题
3.8.1讨论变限积分函数的性态
3.8.2求变限积分的导数
3.8.3求含变限积分的极限
3.8.4求解含有变限积分等式的有关问题3.9反常积分
3.9.1判别反常积分的敛散性
3.9.2计算反常积分3.10定积分的应用
3.10.1已知曲线,求其所围平面图形的面积
3.10.2求旋转体体积
3.10.3求旋转体的侧面积(表面积)
3.10.4求平面曲线的弧长
3.10.5求解平面图形面积、旋转体体积与极值、最值相结合的问题
3.10.6求函数在区间上的平均值
3.10.7定积分在物理学中的简单应用习题3
第4章向量代数与空间解析几何4.1利用向量的定义和性质求解有关问题4.2计算向量的数量积、向量积与混合积4.3求平面方程4.4求直线方程4.5求点到直线或到平面的距离4.6讨论直线、平面之间的位置关系4.7建立曲面方程习题4
第5章多元函数微分学及其应用5.1二元函数的几个概念及其相互关系
5.1.1二元函数的极限、连续、可偏导及可微的相互关系
5.1.2求解x(或y)的一元函数f(x,y0)(或f(x0,y))的有关问题5.2计算多元函数的偏导数和全微分
5.2.1利用隐函数存在定理确定隐函数
5.2.2计算多元显函数的偏导数
5.2.3计算抽象复合函数的偏导数
5.2.4求隐函数的偏导数
5.2.5简化计算偏导数的若干方法
5.2.6多元函数的全微分5.3求二元函数的极值和最值
5.3.1求解无条件极值问题
5.3.2求解条件极值问题
5.3.3求函数z=f(x,y)在有界闭区域上的最值5.4二元函数微分学在几何上的应用5.5求函数的方向导数和梯度习题5
第6章重积分6.1交换二重积分的积分次序或转换其坐标系
6.1.1交换二(累)次积分的积分次序
6.1.2转换坐标系6.2计算二重积分
6.2.1计算累次(二次)积分∫ba∫φ2(x)φ1(x)f(x,y)dydx或∫dc∫ψ2(y)ψ1(y)f(x,y)dxdy
6.2.2利用积分区域的对称性简化二重积分的计算
6.2.3求需分块计算的二重积分
6.2.4比较二重积分值的大小6.3三重积分的计算方法习题6
第7章曲线积分和曲面积分7.1计算第一类曲线积分7.2计算第二类平面曲线积分7.3求解曲线积分与路径无关的有关问题7.4第一类曲面积分的算法7.5第二类曲面积分的算法7.6利用积分曲面的对称性计算第二类曲面积分7.7曲线积分、曲面积分的应用7.8计算向量场的散度与旋度习题7
第8章无穷级数8.1常数项级数敛散性的判别
8.1.1利用常数项级数敛散性定义及其性质判别其敛散性
8.1.2判别正项级数的敛散性
8.1.3判别交错级数的敛散性
8.1.4判别任意项级数的敛散性8.2幂级数
8.2.1求幂级数的收敛半径、收敛区间及收敛域
8.2.2已知一幂级数的收敛半径(收敛域),求与此幂级数有关的另一幂级数的
收敛半径(收敛域)
8.2.3已知两幂级数的收敛半径,求其和级数的收敛半径
8.2.4利用阿贝尔定理确定幂级数的敛散性
8.2.5幂级数和函数的求法
8.2.6求函数的幂级数展开式8.3傅里叶级数
8.3.1求傅里叶级数在某一点处的收敛和
8.3.2求傅里叶级数的系数习题8
第9章常微分方程9.1求解一阶线性微分方程
9.1.1求解可分离变量方程
9.1.2求解齐次微分方程
9.1.3求解一阶线性微分方程
9.1.4求解可化为上述基本类型的一阶线性微分方程9.2求解可降阶的高阶微分方程
9.2.1求解形如y(n)=f(x)的高阶微分方程
9.2.2求解形如y″=f(x,y′)的微分方程
9.2.3求解形如y″=f(y,y′)的微分方程9.3求解二阶微分方程
9.3.1利用二阶线性微分方程解的性质和结构求解有关问题
9.3.2求解高阶常系数齐次线性方程
9.3.3确定高阶常系数非齐次线性方程的特解形式
9.3.4求解二阶常系数非齐次线性微分方程
9.3.5已知常系数线性微分方程的解,反求该微分方程9.4欧拉方程的解法习题9
习题答案或提示
|
精彩片段: |
|
书 评: |
|
其 它: |
|
|
|