账号: 密码:
中国大学出版社协会 | 首页 | 宏观指导 | 出版社天地 | 图书代办站 | 教材图书信息 | 教材图书评论 | 在线订购 | 教材征订
搜索 新闻 图书 ISBN 作者 音像 出版社 代办站 教材征订
购书 请登录 免费注册 客服电话:010-62510665 62510769
图书查询索引 版别索引 分类索引 中图法分类 专业分类 用途分类 制品类型 读者对象 自分类 最新 畅销 推荐 特价 教材征订
综合查询
Advanced Statistical Physics 高等统计物理(英文) - 中国高校教材图书网
书名: Advanced Statistical Physics 高等统计物理(英文)
ISBN:978-7-309-05488-0/O.395 条码:
作者: 戴显熹 编著  相关图书 装订:平装
印次:1-1 开本:16开
定价: ¥38.00  折扣价:¥36.10
折扣:0.95 节省了1.9元
字数:
出版社: 复旦大学出版社 页数:
发行编号: 每包册数:
出版日期: 2007-11-01
小团购 订购 咨询 推荐 打印 放入存书架

内容简介:
戴显熹,1938年5月生于温州。1961年7月毕业于复旦大学物理系。1985年起任复旦大学物理系教授,1986年起任博士生导师。长期从事量子统计和理论物理方法研究,发表学术论文100多篇。
自1978年以来,从事研究生的量子统计与高等统计课程教学,以及本科生的电动力学、量子力学、数理方法、超导物理、理论物理方法等课程的教学。曾获得杨振宁教授授予的Glorious Sun奖金,曾以物理学中奇性问题研究获教育部授予的科学进步奖(二等)等。1980年来应邀访问过美国的休斯顿大学、纽约州立大学理论物理(杨振宁)研究所、德克萨斯超导中心、杨伯翰大学等,曾任杨伯翰大学客座教授。在量子统计、物理学中奇性问题、一些逆问题的严格解及其统一理论和渐近行为控制理论等方面作过较为系统的研究,首次由一材料的比热实际数据中反演出声子谱。

作者简介:
 
章节目录:
CONTENTS

Chapter1 Fundamental Principles
1.1 Introduction:The Characters of Thermodynamics and Statistical Physics and Their Relationship
1.2 Basic Thermodynamic Identities
1.3 Fundamental Principles and Conclusions of Classical Statistics
1.3.1 Microscopic and Macroscopic Descriptions,Statistical Distribution Functions
1.3.2 Liouville Theorem
1.3.3 Statistical Independence
1.3.4 Microscopical Canonical,Canonical and Grand CanonicalEnsembles
1.4 Boltzmann Gas
1.5 Density Matrix
1.5.1 DensityMatrix
1.5.2 Some General Properties of the Density Matrix
1.6 Liouville Theorem in Quantum Statistics
1.7 Canonical Ensemble
1.8 Grand Canonical Ensemble
1.8.1 Fundamental Expression of the Grand Canonical Ensemble
1.8.2 Derivation of the Fundamental Thermodynamic Identity
1.9 Probability Distribution and Slater Sum
1.9.1 Meaning of the Diagonal Elements of the Density Matrix
1.9.2 Slater Summation
1.9.3 Example:Probability of the Harmonic Ensemble
1.10 Theory of the Reduced Density Matrix

Chapter2 The Perfect Gas in Quantum Statistics
2.1 Indistinguishability Principle for Identical Particles
2.2 Bose Distribution and Fermi Distribution
2.2.1 Perfect Gases in Quantum Statistics
2.2.2 Bose Distribution
2.2.3 Fermi Distribution
2.2.4 Comparison of Three Distributions;Gibbs Paradox Again
2.3 Density of States,Chemical Potential and Equation of State
2.3.1 Density of States
2.3.2 Virial Equation for Quantum Ideal Gases
2.4 Black-body Radiation
2.4.1 Thermodynamic Quantities for the Black-body Radiation Field
2.4.2 Exitance and Variety of Displacement Laws
2.4.3 Waveband Radiant Exitance and Waveband Photon Exitance
2.5 Bose-Einstein Condensation in Bulk
2.5.1 Bose Condensation,Dynamical Quantities with Temperature Lower Than theλPoint
2.5.2 Discontinuity of the Derivatives of Specific Heat and λPhenomena
2.5.3 Two-Fluid Theory
2.5.4 2-D Case
2.6 Degenerate Fermi Gases and Ferm Sphere
2.6.1 Properties of Fermi Gases at Absolute Zero
2.6.2 Specific Heat of Free Electron Gases
2.6.3 State Equation,Heat Capacity at Constant Pressure, and Heavy Fermions
2.7 Fermi Integrals and their Low Temperature Expansion
2.8 Magnetism of Fermi Gases
2.8.1 Spin Magnetism:Paramagnetism
2.8.2 Energy Spectra and Stationary States of Electrons in a Homogeneous Magnetic Field
2.8.3 Diamagnetism of Orbital Motion of Free Electrons
2.9 Peierls Perturbation Expansion of Free Energy
2.9.1 Classical Case
2.9.2 Quantum Case
2.9.3 Expansion of Free Energy of an Ideal Gas in an External Field
2.10 Appendix

Chapter3 Second Quantization and Model Hamiltonians
3.1 Necessity of Second Quantization
3.2 Second Quantization for Bose System
3.3 Second Quantization·Fermi System
3.4 Some Conservation Laws
3.5 Some Model Hamiltonians
3.6 Electron Gases with Coulomb Interaction
3.6.1 Completely Ionized Gases—the High Temperature Plasma
3.6.2 The Degenerate Electron Gas with Coulomb Interaction(Metal Plasma)
3.7 Anderson Model

Chapter4 Least Action Principle,Field Quantization and the Electron-Phonon System 4.1 Classical Description of Lattice Vibrations
4.2 Continuous Media Model of Lattice Vibration(Classical)
4.3 The Least Action Principle,Euler-Lagrange Equation and Hamilton Equation
4.4 Lagrangian and Hamiltonian of Continuous Media
4.5 Quantization of the Lattice Vibration Field
4.6 Debye Theory of Specific Heat of Solids
4.7 The Electron-Phonon System and the Frohlich Hamiltonian

Chapter5 Bose-Einste in Condensation
5.1 Spatial andMomentum Distributions of Bose-Einstein Condensation in Harmonic Traps and Bloch Summation
5.1.1 Introduction
5.1.2 Generalized Expression for Particle Density
5.1.3 Distributions for Ideal Systems
5.1.4 New Expression with Clear Physical Picture
5.1.5 Momentum Distributions
5.1.6 Results of Numerical Calculations
5.1.7 Discussion and Concluding Remarks
5.1.8 Momentum Distribution of BEC
5.2 BEC in Confined Geometry and Thermodynam icMapping
5.2.1 Introduction
5.2.2 Confinement Effects
5.2.3 Thermodynamic Mapping
5.2.4 Mapping Relation for Confined BEC
5.2.5 Determination of the Critical Temperature
5.2.6 Discussion

Chapter6 Some Inverse Problems in Quantum Statistics
6.1 Introduction
6.2 Specific Heat-Phonon Spectrum Inversion
6.2.1 Technique for Eliminating Divergences
6.2.2 Unique Existence Theorem and Exact SPIE Solution
6.2.3 Summary
6.3 Concrete Realization of Inversion
6.3.1 The Specific Heat-Phonon Spectrum Inversion Problem
6.3.2 Results and Concluding Remarks
6.4 Mobius Inversion Formula
6.4.1 RiemannζFunction and Mobius Function
6.4.2 Mobius Inversion Formula
6.4.3 The Modified Mobius Inversion Formula
6.4.4 Applications in Physics
6.5 Unification of the Theories
6.5.1 Introduction
6.5.2 Deriving Chen's Formula from Dai's Exact Solution
6.5.3 Concluding Remarks
6.6 Appendix

Chapter7 An Introduction to Theory of Green's Functions
7.1 Temperature-Time Green's Functions
7.1.1 Definition of Temperature-Time Green's Functions
7.1.2 The Equation of Motion of Double-Time Green's Functions
7.1.3 Time Correlation Functions
7.2 Spectral Theorem
7.2.1 Spectral Representation of Time Correlation Functions
7.2.2 Spectral Representations of Retarded and Advanced Green's Functions
7.2.3 Spectral Representation of Causal Green's Functions
7.3 Example:Ideal Quantum Gases
7.4 Theory of Superconductivity with Double-Time Green's Functions
7.5 Higher-Order Spectral Theorem,Sum Rules and Uniqueness

Chapter8 A Unified Diagonalization Theorem for Quadratic Hamiltonian
8.1 A Model Hamiltonian
8.2 Diagonalization Theorem for Fermi Quadratic Forms
8.3 Conclusion:A Unified Diagonalization Theorem

Chapter9 Functional Integral Approach:A Third Formulation of Quantum Statistical Mechanics
9.1 Introduction
9.1.1 Hubbard's Method
9.1.2 Difficulties
9.2 An Operator Identity
9.3 Functional Integral Formulation of Quantum Statistical Mechanics
9.4 Reality and Method of Steepest Descents
9.5 Discussion and Concluding Remarks
9.6 Some Recent Developments
9.7 Application:An Exact Solution

References
Index
精彩片段:
 
书  评:
 
其  它:
 



| 我的帐户 | 我的订单 | 购书指南| 关于我们 | 联系我们 | 敬告 | 友情链接 | 广告服务 |

版权所有 © 2000-2002 中国高校教材图书网    京ICP备10054422号-7    京公网安备110108002480号    出版物经营许可证:新出发京批字第版0234号
经营许可证编号:京ICP证130369号    技术支持:云因信息