Brian Cowan 物理学教授,伦敦大学皇家Holloway学院物理系系主任。毕业于英国Sussex大学物理系,曾先后就职于诺丁汉(Nottingham)大学和巴黎(Paris)大学,致力于核磁共振(NMR)的理论和实验研究,著有NuclearMagnetic Resoˉnance and Relaxation(Cambridge University Press,1997)等著作。
章节目录:
出版者的话
复旦大学出版社出版英文影印版《研究生教学参考书系》,主要基于以下几点考虑。
1. (新加坡)世界科技出版公司以出版科技专著闻名于世,同我社已有10多年的友好交往。从20世纪90年代以来,尤其是1995年该公司并购了伦敦帝国学院出版社(Imperial College Press)51%的股份(近年已经完成了100%的股份收购)之后,这两大出版机构在潘国驹教授的集中指挥下,充分发挥了编辑学术委员会的职能,使得出书范围不断拓宽,图书层次逐渐丰富,因此从中遴选影印图书的空间更大了,再加上该公司在上海设有办事机构,相关工作人员工作细致,服务周到,给两个单位的合作交流带来极大的便利。
2. 研究生教育是创新人才培养的关键,教材建设直接关系到研究生科学水平的根本。从2003年开始,我社陆续出版了Fudan Series in Graduate Textbooks这套丛书,国内的读者反响很好。但限于作者人力,这套丛书涵盖的学科和门类都严重不足。为此,我们想到再借助国外出版力量,引进一批图书作为硕士研究生的补充教材,(新加坡)世界科技出版公司与我社的合作,恰好提供了这样一个良好的机会。我们从该公司提供的近期书目中,遴选30多本样书,经过专家审读后,最终确定了其中的11种作为首批《研究生教学参考书系》影印出版。这11种图书的作者来自美、英、法、德、加拿大5个国家的10多所高校或研究部门,他们既是相关学科科研的领军人物,又是高年级本科生和研究生教学的杰出教授。各门教材既考虑到深入浅出的认知规律,又突出了前沿学科的具体应用,每本书都有充实的文献资料,有利于读者和研究人员深入探索。这其中6本教材配有习题,还包括一本具有物理背景的人员都需要了解的高级科普读物——《理解宇宙——从夸克到宇宙学》。
3. 为了有利于广大读者和图书管理人员、图书采购销售人员的使用,特请龚少明编审为每本影印书编写出中文内容介绍和作者概况,并由他将preface(序言)全文译成中文。序言是一本书的总纲,它涉及写作要旨、逻辑体系、内容特色和研读指导等等,我们将其译成中文至少有利于读者浏览和选购,避免买书仓促带来的失误,毕竟英语是多数读者的第二种语言。
4. 原版书价格较贵,大大超出读者的购买能力,即使图书馆或大学资料室也会受到经费不足的制约。出版影印本的书价大约只有原价的十分之一,无疑会给需要这些书的研究生和图书馆带来真正的实惠,这也是(新加坡)世界科技出版公司与我们合作的目的之一。
5. 考虑到物理类图书是(新加坡)世界科技出版公司的第一品牌,我们首次引进的11本书,都属大物理的范畴。这一尝试如果得到读者和专家认可,今后再陆续开辟其他学科的影印渠道。
欢迎读者批评指正,并提出有益的建议。
1.1 Terminology and Methodology
1.1.1 Approaches to the subject
1.1.2 Description of states
1.1.3 Extensivity and the thermodynamic limit
1.2 The Fundamental Principles
1.2.1 The laws of thermodynamics
1.2.2 Probabilistic interpretation of the First Law
1.2.3 Microscopic basis for entropy
1.3 Interactions —The Conditions for Equilibrium
1.3.1 Thermal interaction—Temperature
1.3.2 Volume change—Pressure
1.3.3 Particle interchange—Chemical potential
1.3.4 Thermal interaction with the rest of the world—The Boltzmann factor
1.3.5 Particle and energy exchange with the rest of the world —The Gibbs factor
1.4 Thermodynamic Averages
1.4.1 The partition function
1.4.2 Generalised expression for entropy
1.4.3 Free energy
1.4.4 Thermodynamic variables
1.4.5 Fluctuations
1.4.6 The grand partition function
1.4.7 The grand potential
1.4.8 Thermodynamic variables
1.5 Quantum Distributions
1.5.1 Bosons and fermions
1.5.2 Grand potential for identical particles
1.5.3 The Fermi distribution
1.5.4 The Bose distribution
1.5.5 The classical limit—The Maxwell distributior
1.6 Classical Statistical Mechanics
1.6.1 Phase space and classical states
1.6.2 Boltzmann and Gibbs phase spaces
1.6.3 The Fundamental Postulate in the classical case
1.6.4 The classical partition function
1.6.5 The equipartition theorem
1.6.6 Consequences of equipartition
1.6.7 Liouville's theorem
1.6.8 Boltzmann's H theorem
1.7 The Third Law of Thermodynamics
1.7.1 History of the Third Law
1.7.2 Entropy
1.7.3 Quantum viewpoint
1.7.4 Unattainability of absolute zero
1.7.5 Heat capacity at low temperatures
1.7.6 Other consequences of the Third Law
1.7.7 Pessimist's statement of the laws of thermodynamics
2 Practical Calculations with Ideal Systems
2.1 The Density of States
2.1.1 Non-interacting systems
2.1.2 Converting sums to integrals
2.1.3 Enumeration of states
2.1.4 Counting states
2.1.5 General expression for the density of states
2.1.6 General relation between pressure and energy
2.3 Ideal Classical Gas
2.3.1 Quantum approach
2.3.2 Classical approach
2.3.3 Thermodynamic properties
2.3.4 The l/N! term in the partition function
2.3.5 Entropy of mixing
2.4 Ideal Fermi Gas
2.4.0 Methodology for quantum gases
2.4.1 Fermi gas at zero temperature
2.4.2 Fermi gas at low temperatures—simple model
2.4.3 Fermi gas at low temperatures—series expansion
Chemical potential
Internal energy
Thermal capacity
2.4.4 More general treatment of low temperature heat capacity
2.4.5 High temperature behaviour—the classical limit
2.5 Ideal Bose Gas
2.5.1 General procedure for treating the Bose gas
2.5.2 Number of particles—chemical potential
2.5.3 Low temperature behaviour of Bose gas
2.5.4 Thermal capacity of Bose gas—below Tc
2.5.5 Comparison with superfluid4 He and other systems
2.5.6 Two-fluid model of superfluid 4He
2.5.7 Elementary excitations
2.6 Black Body Radiation—The Photon Gas
2.6.1 Photons as quantised electromagnetic waves
2.6.2 Photons in thermal equilibrium—black body radiation
2.6.3 Planck's formula
2.6.4 Internal energy and heat capacity
2.6.5 Black body radiation in one dimension
2.7 Ideal Paramagnet
2.7.1 Partition function and free energy
2.7.2 Thermodynamic properties
2.7.3 Negative temperatures
2.7.4 Thermodynamics of negative temperatures
3 Non-Ideal Gases
3.1 Statistical Mechanics
3.1.1 The partition function
3.1.2 Cluster expansion
3.1.3 Low density approximation
3.1.4 Equation of state
3.2 The Virial Expansion
3.2.1 Virial coefficients
3.2.2 Hard core potential
3.2.3 Square-well potential
3.2.4 Lennard-Jones potential
3.2.5 Second virial coefficient for Bose and Fermi gas
3.3 Thermodynamics
3.3.1 Throttling
3.3.2 Joule-Thomson coefficient
3.3.3 Connection with the second virial coefficient..
3.3.4 Inversion temperature
3.4 Van der Waals Equation of State
3.4.1 Approximating the partition function
3.4.2 Van der Waals equation
3.4.3 Microscopic "derivation" of parameters
3.4.4 Virial expansion
3.5 Other Phenomenological Equations of State
3.5.1 The Dieterici equation
3.5.2 Virial expansion
3.5.3 The Berthelot equation
4 Phase Transitions
4.1 Phenomenology
4.1.1 Basic ideas
4.1.2 Phase diagrams
4.1.3 Symmetry
4.1.4 Order of phase transitions
4.1.5 The order parameter
4.1.6 Conserved and non-conserved order parameters
4.1.7 Critical exponents
4.1.8 Scaling theory
4.1.9 Scaling of the free energy
4.2 First-Order Transition—An Example
4.2.1 Coexistence
4.2.2 Van der Waals fluid
4.2.3 The Maxwell construction
4.2.4 The critical point
4.2.5 Corresponding states
4.2.6 Dieterici's equation
4.2.7 Quantum mechanical effects
4.3 Second-Order Transition—An Example
4.3.1 The ferromagnet
4.3.2 The Weiss model
4.3.3 Spontaneous magnetisation
4.3.4 Critical behaviour
4.3.5 Magnetic susceptibility
4.3.6 Goldstone modes
4.4 The Ising and Other Models
4.4.1 Ubiquity of the Ising model
4.4.2 Magnetic case of the Ising model
4.4.3 Ising model in one dimension
4.4.4 Ising model in two dimensions
4.4.5 Mean field critical exponents
4.4.6 The XY model
4.4.7 The spherical model
4.5 Landau Treatment of Phase Transitions
4.5.1 Landau free energy
4.5.2 Landau free energy for the ferromagnet
4.5.3 Landau theory—second-order transitions
4.5.4 Thermal capacity in the Landau model
4.5.5 Ferromagnet in a magnetic field
4.6 Ferroelectricity
4.6.1 Description of the phenomenon
4.6.2 Landau free energy
4.6.3 Second-order case
4.6.4 First-order case
4.6.5 Entropy and latent heat at the transition
4.6.6 Soft modes
4.7 Binary Mixtures
4.7.1 Basic ideas
4.7.2 Model calculation
4.7.3 System energy
4.7.4 Entropy
4.7.5 Free energy
4.7.6 Phase separation—the lever rule
4.7.7 Phase separation curve—the binodal
4.7.8 The spinodal curve
4.7.9 Entropy in the ordered phase
4.7.10 Thermal capacity in the ordered phase
4.7.11 Order of the transition and the critical point
4.7.12 The critical exponent β
4.8 Quantum Phase Transitions
4.8.1 Introduction
4.8.2 The transverse Ising model
4.8.3 Revision of mean field Ising model
4.8.4 Application of a transverse field
4.8.5 Transition temperature
4.8.6 Quantum critical behaviour
4.8.7 Dimensionality and critical exponents
4.9 Retrospective
4.9.1 The existence of order
4.9.2 Validity of mean field theory
4.9.3 Features of different phase transition models
5 Fluctuations and Dynamics
5.1 Fluctuations
5.1.1 Probability distribution functions
5.1.2 Mean behaviour of fluctuations
5.1.3 The autocorrelation function
5.1.4 The correlation time
5.2 Brownian Motion
5.2.1 Kinematics of a Brownian particle
5.2.2 Short time limit
5.2.3 Long time limit
5.3 Langevin's Equation
5.3.1 Introduction
5.3.2 Separation of forces
5.3.3 The Langevin equation
5.3.4 Mean square velocity and equipartition
5.3.5 Velocity autocorrelation function
5.3.6 Electrical analogue of the Langevin equation
5.4 Linear Response—Phenomenology
5.4.1 Definitions
5.4.2 Response to a sinusoidal excitation
5.4.3 Fourier representation
5.4.4 Response to a step excitation
5.4.5 Response to a delta function excitation
5.4.6 Consequence of the reality of X(t)
5.4.7 Consequence of causality
5.4.8 Energy considerations
5.4.9 Static susceptibility
5.4.10 Relaxation time approximation
5.5 Linear Response—Microscopics
5.5.1 Onsager's hypothesis
5.5.2 Nyquist's theorem
5.5.3 Calculation of the step response function
5.5.4 Calculation of the autocorrelation function
Appendixes
Appendix I The Gibbs-Duhem Relation
A.1.1 Homogeneity of the fundamental relation
A.1.2 The Euler relation
A.1.3 A caveat
A.1.4 The Gibbs-Duhem relation
Appendix 2 Thermodynamic Potentials
A.2.1 Equilibrium states
A.2.2 Constant temperature (and volume): the Helmholtz potential
A.2.3 Constant pressure and energy: the Enthalpy function
A.2.4 Constant pressure and temperature: the Gibbs free energy
A.2.5 Differential expressions for the potentials
A.2.6 Natural variables and the Maxwell relations
Appendix 3 Mathematica Notebooks
A.3.1 Chemical potential of Fermi gas at low temperatures
A.3.2 Internal energy of the Fermi gas at low temperatures
A.3.3 Fugacity of the ideal gas at high temperatures—Fermi, Maxwell and Bose cases
A.3.4 Internal energy of the ideal gas at high temperatures—Fermi, Maxwell and Bose cases
Appendix 4 Evaluation of the Correlation Function Integral
A.4.1 Initial domain of integration
A.4.2 Transformation of variables
A.4.3 Jacobian of the transformation